The Enantioselective Addition of Diethylzinc to Aldehydes Catalyzed by 2-Methylquinoline Derived Chiral Ligands

Qian Yong XU, Guo Xing WANG, Xin Fu PAN*

Department of Chemistry, National Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000

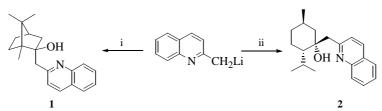
Abstract: Readily available 2-methylquinoline derived chiral ligands **1** and **2** have been applied in the enantioselective addition of diethylzinc to aldehydes with up to 91.4% ee being recorded.

Keywords: 2-Methylquinoline, enantioselective addition, diethylzinc.

One of the most important and fundamental synthetic procedures for the establishment of a carbon-carbon bond stereoselectively is the enantioselective addition of organometallic reagents to aldehydes affording chiral secondary alcohols¹. In this process, a frequently used method is to perform the reaction in the presence of a chiral ligand such as amino alcohol². Here, we first report that two new chiral ligands³, which were readily available by the reaction of chiral ketone with lithiated 2-methylquinoline as single diastereomer as shown by ¹H NMR analysis of the product mixtures (**Scheme 1**), were applied to catalyze the enantioselective addition of diethylzinc to aldehydes (**Table 1**).

Table1 Enantioselective addition of diethylzinc to aldehydes ^a
--

Entry	Substrate	Ligand (mol %)	Yield (%) ^b	ee% (config.) ^c
1	Benzaldehyde	1 (20)	96	3.1 (R)
2	Benzaldehyde	2 (5)	93	4.5 (S)
3	Benzaldehyde	2 (20)	92	4.4 (S)
4	p-Chlorobenzaldehyde	1 (20)	90	6.5 (R)
5	o-Anisaldehyde	1 (20)	95	0.2 (R)
6	p-Anisaldehyde	1 (20)	89	1.4 (R)
7	<i>p</i> -Tolualdehyde	1 (20)	93	3.5 (R)
8	4-(Dimethylamino)benzaldehyde	1 (20)	97	$8.5(R)^{d}$
9	3,4-Dimethoxybenzaldehyde	1 (20)	93	6.8 (R) ^d
10	1-Naphthaldehyde	1 (20)	91	9.3 (R) ^d
11	2-Naphthaldehyde	1 (20)	87	$8.6(R)^{d}$
12	trans-Cinnamaldehyde	1 (20)	93	$4.5(R)^{d}$
13	Nonylaldehyde	1 (20)	70	8.5 (R) ^e
14	Dodecylaldehyde	1 (20)	78	9.7 (R) ^e
15	Cyclohexanecarboxaldehyde	1 (20)	83	$2.7 (R)^{e}$


a) The reaction was run in toluene/hexane (1:1 v/v) at 0°C, aldehyde/ $Et_2Zn = 1.0/2.0$ (mmol);

b) Based on isolated product;

c) Except as note, the ee values were determined by GLC;

d) Determined by HPLC; e) Determined by GLC after acetylation.

Scheme 1

Reagents and conditions: i. (+)-Camphor, ether, 0°C; ii. (-)-Menthone, ether, 0°C.

It can be seen from the results that compound **1** is a better ligand than compound **2** (entry 1, 2, 3). The enantioselectivity of the catalytic addition of diethylzinc to an aldehyde with an electron-donating group in the *para* position of the aromatic ring is higher than to an aldehyde with an electron-withdrawing group (entry 4, 6, 7, 8, 9). For aliphatic aldehyde, the enantioselectivity of the reaction is generally low.

References and notes

- 1. R. Noyori, Asymmetric Catalysis in Organic Synthesis, Wiley, New York, 1994, 255-297.
- a) T. Shibata, K. Choji, T. Hayase, Y. Aizu, K. Soai, *Chem. Commun.*, **1996**, 1235; b) T. Shibata, K. Choji, H. Morioka, T. Hayase, K. Soai, *Chem. Commun.*, **1996**, 751. c) H. L. Kwong, W. S. Lee, *Tetrahedron: Asymmetry*, **1999**, *10*, 3791; d) W. A. Nugent, *Chem. Commun.*, **1999**, 1369.
- 3. Compound 1: mp 88-89 °C; $[\alpha]_{D}^{20} = -37.8$ (c 1.01, CHCl₃); IR (KBr, cm⁻¹): 3320-3447, 1582, 1553; ¹H NMR (CDCl₃, δ_{ppm}): 0.56 (s, 3H, CH₃), 0.64 (s, 3H, CH₃), 1.17 (s, 3H, CH₃), 1.10- 1.15 (m, 1H, H-4), 1.41-1.49 (m, 2H, H-5, H-6), 1.52-1.58 (m, 1H, H-3), 1.71-1.78 (m, 2H, H-5', H-6'), 2.14 (m, 1H, H-3'), 3.17 (s, 2H, ArCH₂), 6.75 (br, 1H, OH), 7.33 (d, 1H, J = 8.4 Hz, ArH³), 7.51 (m, 1H, ArH⁷), 7.69 (m, 1H, ArH⁶), 7.80 (d, 1H, J = 8.4 Hz, ArH⁵), 8.01 (d, 1H, J = 8.2 Hz, ArH⁸), 8.12 (d, 1H, J = 8.4 Hz, ArH⁴); ¹³C NMR (CDCl₃, δ_{ppm}): 11.27, 21.04, 21.48, 22.23, 30.97, 45.07, 45.57, 47.53, 49.47, 52.50, 81.45, 122.91, 126.08, 126.67, 127.50, 128.71, 129.75, 136.71, 146.68, 161.27; MS (m/z) (EI): 295 (M⁺, 6), 280 (4), 185 (29), 143 (100); Anal. calcd. for C₂₀H₂₅NO: C 81.31, H 8.53, N 4.7s4, Found: C 81.23, H 8.44, N 4.89. Compound **2**: mp 137-138°C; $[\alpha]_{D}^{20} = -61.6$ (c 1.14, CHCl₃); IR (KBr, cm⁻¹): 3330-3456, 1578, 1550; ¹H NMR (CDCl₃, δ_{ppm}): 0.66 (d, 3H, J = 6.5 Hz, CH₃), 0.95 (d, 3H, J = 6.5CH₃), 1.02 (d, 3H, J = 6.5 Hz, CH₃), 0.87-0.91 (m, 1H, CHMe₂), 1.10-1.12 (m, 1H, H-5), 1.24-1.27 (m, 1H, H-6), 1.44-1.48 (m, 1H, H-2), 1.61-1.70 (m, 4H, 2×CH₂), 2.36 (m, 1H, H-6), 3.14 (d, 1H, J = 13.8 Hz, ArCH₂), 3.47 (d, 1H, J = 13.8 Hz, ArCH₂), 5.30 (br, 1H, OH), 7.43 (d, 1H, J = 8.4 Hz, ArH³), 7.53 (m, 1H, ArH⁷), 7.71 (m, 1H, ArH⁶), 7.91 (d, 1H, J = 8.4 Hz, ArH⁵), 7.99 (d, 1H, J = 8.4 Hz, ArH⁸), 8.24 (d, 1H, J = 8.4 Hz, ArH⁴). ¹³C NMR (CDCl₃, δ_{ppm}): 18.47, 21.40, 22.69, 24.00, 28.31, 26.98, 36.08, 47.89, 48.22, 51.33, 75.60, 124.29, 126.67, 127.49, 128.53, 129.22, 130.36, 137.24, 147.84, 162.53. MS (m/z) (EI): 297 (M⁺, 2), 282 (1), 254 (1), 240 (1), 212 (11), 143 (100); Anal. calcd. for C₂₀H₂₇NO: C 80.76, H 9.15, N 4.71, Found: C 80.67, H 9.24, N 4.93.

Received 10 October, 2000